Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

The Protective Benefit of Heme Oxygenase-1 Gene-Modified Human Placenta-Derived Mesenchymal Stem Cells in a N-Nitro-L-Arginine Methyl Ester-Induced Preeclampsia-Like Rat Model: Possible Implications for Placental Angiogenesis.

We previously reported that cytoprotective Heme oxygenase-1, HO-1 (HMOX1) gene-modified human placenta-derived mesenchymal stem cell (HO-1-PMSC) improved placental vascularization in vitro. In the current study, we explored the protective benefit of HO-1-PMSC transplantation in a preeclampsia (PE)-like rat model. A model of PE was successfully constructed by intraperitoneal injection of N-nitro-L-arginine methyl ester (L-NAME). Blood pressure and urinary protein levels were measured. Doppler ultrasound was examined to understand uteroplacental perfusion. ELISA was used to examine the serum levels of VEGF, PlGF, sFlt-1, and sEng. The placentas and fetuses were weighed to verify the improvement in pregnancy outcome. Immunohistochemical and H&E staining was used to detect microvessel density (MVD) in placental tissues and kidney pathology, respectively. The distribution of GFP-labeled PMSC in the placenta were observed under fluorescence microscopy. Blood pressure and proteinuria were reduced and kidney damage was improved. PE rat models treated with PMSC and HO-1-PMSC exhibited an increase in the quality of fetuses and placentas, MVD, VEGF, and PlGF expression, but substantially decreased expression of sFlt-1 and sEng. Doppler ultrasound showed that the placental perfusion was improved. Green fluorescent tracing experiments verified that the cells were successfully transplanted into the placenta and distributed in the blood vessels, indicating that the cells might participate in the process of angiogenesis. These results indicate that therapy with HO-1-PMSC could improve placental vascular dysplasia, increase placental perfusion, control PE symptoms, and promote pregnancy outcome by regulating the balance of angiogenic and antiangiogenic factors or directly participating in the repair of placental vessels in a PE-like rat model.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app