Add like
Add dislike
Add to saved papers

Bioactive Dimeric Tetrahydroxanthones with 2,2'- and 4,4'-Axial Linkages from the Entomopathogenic Fungus Aschersonia confluens .

Thirteen tetrahydroxanthone dimers, atrop -ascherxanthone A ( 1 ), ascherxanthones C-G ( 2 - 6 ), and confluxanthones A-G ( 7 - 13 ), were isolated from the entomopathogenic fungus Aschersonia confluens BCC53152. The chemical structures were determined based on analysis of NMR spectroscopic and mass spectrometric data. The absolute configurations of compounds 1 and 7 were confirmed by single-crystal X-ray diffraction experiments, while the configurations of other compounds were assigned based upon evidence from NOESY and NOEDIFF experiments, modified Mosher's method, and ECD spectroscopic data together with biogenetic considerations. Compounds 1 , 3 - 5 , 7 - 11 , and 13 showed antimalarial activity against Plasmodium falciparum (K1, multidrug-resistant strain) (IC50 0.6-6.1 μM), antitubercular activity against Mycobacterium tuberculosis H37Ra (MIC 6.3-25.0 μg/mL), and cytotoxicity against NCI-H187 (IC50 0.5-3.5 μM) and Vero (IC50 0.9-6.1 μM) cells. All tested compounds except for compound 9 exhibited cytotoxicity against KB cells (IC50 1.3-9.7 μM).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app