Add like
Add dislike
Add to saved papers

A Robust Percutaneous Myocardial Infarction Model in Pigs and Its Effect on Left Ventricular Function.

In this study, we created a reproducible myocardial infarction (MI) model in pigs characterized by a low mortality rate and significant changes in left ventricular function. After administering an arrhythmia prevention regimen, we created a 90-min balloon-induced percutaneous MI in 42 pigs below the first diagonal branch (D1) of the left anterior descending artery. Echocardiograms were performed before and 14 days after MI induction. Pigs with a > 30% decrease in left ventricular ejection fraction (LVEF) underwent electrophysiological mapping by the NOGA system. Our mortality rate was 4.8%. The incidence of ventricular fibrillation (VF) was 28.6%; all VF events were successfully resuscitated. At day 14, echocardiography and NOGA mapping confirmed transmural scar. LVEF decreased 41% from baseline. Radial and circumferential strain significantly decreased in the LAD distal to D1, and the LV showed dyssynchrony. An anti-arrhythmia regimen decreased mortality significantly, and our model induced dramatic functional changes. The basic procedures of the model included an arrhythmia prevention protocol and myocardial infarction creation, which effectively decreased mortality and provided a robust change in left ventricular (LV) function after 14 days.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app