Add like
Add dislike
Add to saved papers

SMAC Mimetic/IAP Inhibitor Birinapant Enhances Radiosensitivity of Glioblastoma Multiforme.

Radiation Research 2021 June 2
Birinapant is a novel SMAC peptidomimetic molecule in clinical development. It suppresses the inhibitor of apoptosis proteins (IAPs) and promotes cytochrome-C/Apaf-1/caspase-9 activation to induce effective apoptosis. Because IAP inhibition has been shown to enhance the sensitivity of cancer cells to radiation, we investigated the role of birinapant in radiosensitization of glioblastoma cells in vitro and in vivo. Two glioblastoma cell lines, U-251 and U-87, were used to analyze radiosensitization in vitro with 7-AAD cell death/apoptosis and clonogenic assays. Subcutaneous flank (U-251 and U-87) and intracranial orthotopic (U-251) xenografts in nude mice were used to evaluate radiosensitization in vivo. TNF-α levels in media and serum were measured using electrochemiluminescence. Radiosensitization in vitro was more prominent for U-251 cells than for U-87 cells. In vivo, in both tumor models, significant tumor growth delay was observed with combination treatment compared to radiation alone. There was a survival benefit with combination treatment in the orthotopic U-251 model. TNF-α levels in media correlated directly with radiation dose in vitro. These findings show that birinapant can enhance the radiosensitivity of glioblastoma cell lines in cell-based assays and tumor models via radiation-induced TNF-α. Further study into the use of birinapant with radiation therapy is warranted.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app