Add like
Add dislike
Add to saved papers

Enhanced gene expression by a novel designed leucine zipper endosomolytic peptide.

An endosomal trap is a major barrier in gene therapy. We have designed an endosomolytic peptide based on the leucine zipper sequence and characterized it both structurally and functionally. The results illustrated that leucine zipper endosomolytic peptide (LZEP) exhibited appreciable hemolysis of human red blood cells (hRBCs) at pH 5.0, but negligible hemolysis at pH 7.4. Calcein release experiment indicated that only at pH 5.0 but not at pH 7.4, LZEP was able to permeabilize hRBCs. LZEP revealed significant self-assembly as well as peptide induced α-helical structure at pH 5.0. Unlike at pH 5.0, LZEP failed to self-assemble and showed a random coil structure at pH 7.4. Transfection data depicted that lipoplexes modified with LZEP resulted in significantly higher gene expression as compared to lipoplexes without LZEP. Interestingly, the transfection efficacy of LZEP modified lipid nanoparticles reached the levels of Lipofectamine 2000 (LF 2000), without any cellular toxicity as observed by MTT assay. The results suggest a novel approach for designing endosomolytic peptides by employing the leucine zipper sequence and simultaneously the designed peptides could be utilized for enhancing gene delivery into mammalian cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app