Journal Article
Review
Add like
Add dislike
Add to saved papers

A comprehensive review on alginate-based delivery systems for the delivery of chemotherapeutic agent: Doxorubicin.

Doxorubicin (DOX), an anthracycline drug, is widely used for the treatment of several cancers like osteosarcoma, cervical carcinoma, breast cancer, etc. DOX lacks target specificity; thereby it also affects normal cells thus resulting in several side-effects. A drug delivery system (DDS) can be used to deliver the drug in a controlled and sustained manner at a targeted site within the body. Various DDS like nanoemulsions, polymeric nanoparticles, and liposomes are used for loading DOX. Alginate, a polysaccharide is widely used for fabricating DDS due to its biodegradable and bio-compatible properties. Alginates, in combination with other biomaterials, have been extensively used as a novel drug delivery carrier for DOX. Alginate provides a platform for drug delivery in different forms like hydrogels, nanogels, nanoparticles, microparticles, graphene oxide systems, magnetic systems, etc. Herein, we briefly describe alginate in combination with other materials as a nanocarrier for targeted delivery of DOX for anti-cancer treatment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app