Add like
Add dislike
Add to saved papers

Effects of dynamic and isometric resistance training protocols on metabolic profile in hemodialysis patients: a randomized controlled trial.

The aim of this study was to compare the effect of dynamic (DRT) and isometric (IRT) resistance training on glycemic homeostasis, lipid profile, and nitric oxide (NO) in hemodialysis (HD) patients. Patients were randomly distributed into 3 groups: control ( n  = 65), DRT ( n  = 65), and IRT ( n  = 67). Patients assessed before and after the intervention period were tested for fasting blood glucose, glycated hemoglobin, oral glucose tolerance test, insulin resistance, lipid profile, leptin, insulin, adiponectin, C-reactive protein, and NO . Patients underwent to strength and body composition assessments. Subjects allocated in both DRT and IRT groups took part in a 24-week resistance training program, 3 times per week. Each training session was approximately 1 hour before dialysis and consisted of 3 sets of 8-12 repetitions at low intensity. Total workload was higher in the DRT as compared with the IRT. This heightened workload related to better glycemic homeostasis in HD patients as measured by regulation of insulin, adiponectin, and leptin, while improveing triglycerides, free-fat mass, and muscle strength. Additionally, NO levels were increased in the DRT group. NO was significantly correlated with glucose intolerance ( r  = -0.42, p  = 0.0155) and workload ( r  = 0.46, p  = 0.0022). The IRT group only improved strength ( p  < 0.05). Twenty-four weeks of DRT improved glycemic homeostasis, lipid profile, and NO in HD patients. Although IRT seems to play an important role in increasing strength, DRT might be a better choice to promote metabolic adjustments in HD patients. Clinical trial: https://www.ensaiosclinicos.gov.br/rg/RBR-3gpg5w. Novelty: DRT might be a better choice for metabolic improvements in patients with chronic kidney disease (CKD). Exercise-training might treat metabolic imbalance in CKD patients.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app