Add like
Add dislike
Add to saved papers

The nonlinear increase of pain in distance-based and area-based spatial summation.

Pain 2021 January 12
ABSTRACT: When nociceptive stimulation affects a larger body area, pain increases. This effect is called spatial summation of pain (SSp). The aim of this study was to describe SSp as a function of the size or distance of a stimulated area(s) and to test how this function is shaped by the intensity and SSp test paradigm. Thirty-one healthy volunteers participated in a within-subject experiment. Participants were exposed to area- and distanced based SSp. For area-based SSp, electrocutaneous noxious stimuli were applied by up to 5 electrodes (5 areas) forming a line-like pattern; for distance-based SSp, the same position and lengths of stimuli were used but only two electrodes were stimulated. Each paradigm was repeated using pain of low, moderate, high intensity. It was found that the pattern of pain intensity followed a logarithmic (power) rather than a linear function. The dynamics of the pain increase were significantly different across pain intensities, with more summation occurring when pain was perceived as low. Results indicated that area-based SSp is more painful than distance-based SSp when low and moderate but not when high pain intensity is induced. Presented findings have important implications for all studies, in which the spatial dimension of pain is measured. When the area or separation between nociceptive stimulation increases, pain does not increase linearly and the pattern of the pain increase is a result of the interaction between intensity and the number of nociceptive sites. A power function should be considered when predicting the size of a nociceptive source.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app