Add like
Add dislike
Add to saved papers

Single-cell analysis of nonhuman primate preimplantation development in comparison to humans and mice.

BACKGROUND: Genetic programs underlying preimplantation development and early lineage segregation are highly conserved across mammals. It has been suggested that nonhuman primates would be better model organisms for human embryogenesis, but a limited number of studies have investigated the monkey preimplantation development. In this study, we collect single cells from cynomolgus monkey preimplantation embryos for transcriptome profiling and compare with single-cell RNA-seq data derived from human and mouse embryos.

RESULTS: By weighted gene-coexpression network analysis, we found that cynomolgus gene networks have greater conservation with human embryos including a greater number of conserved hub genes than that of mouse embryos. Consistently, we found that early ICM/TE lineage-segregating genes in monkeys exhibit greater similarity with human when compared to mouse, so are the genes in signaling pathways such as LRP1 and TCF7 involving in WNT pathway. Last, we tested the role of one conserved pre-EGA hub gene, SIN3A, using a morpholino knockdown of maternal RNA transcripts in monkey embryos followed by single-cell RNA-seq. We found that SIN3A knockdown disrupts the gene-silencing program during the embryonic genome activation transition and results in developmental delay of cynomolgus embryos.

CONCLUSION: Taken together, our study provided new insight into evolutionarily conserved and divergent transcriptome dynamics during mammalian preimplantation development.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app