Journal Article
Review
Add like
Add dislike
Add to saved papers

Multiplicity of α-Synuclein Aggregated Species and Their Possible Roles in Disease.

α-Synuclein amyloid aggregation is a defining molecular feature of Parkinson's disease, Lewy body dementia, and multiple system atrophy, but can also be found in other neurodegenerative disorders such as Alzheimer's disease. The process of α-synuclein aggregation can be initiated through alternative nucleation mechanisms and dominated by different secondary processes giving rise to multiple amyloid polymorphs and intermediate species. Some aggregated species have more inherent abilities to induce cellular stress and toxicity, while others seem to be more potent in propagating neurodegeneration. The preference for particular types of polymorphs depends on the solution conditions and the cellular microenvironment that the protein encounters, which is likely related to the distinct cellular locations of α-synuclein inclusions in different synucleinopathies, and the existence of disease-specific amyloid polymorphs. In this review, we discuss our current understanding on the nature and structure of the various types of α-synuclein aggregated species and their possible roles in pathology. Precisely defining these distinct α-synuclein species will contribute to understanding the molecular origins of these disorders, developing accurate diagnoses, and designing effective therapeutic interventions for these highly debilitating neurodegenerative diseases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app