Add like
Add dislike
Add to saved papers

LncRNA NEAT1 promotes apoptosis and inflammation in LPS-induced sepsis models by targeting miR-590-3p.

Sepsis is a complication of infection caused by disease or trauma. Increasing evidence have shown that long noncoding RNAs (lncRNAs) are involved in the regulation of sepsis. However, the mechanism of lncRNA nuclear enriched abundant transcript 1 (NEAT1) in the regulation of sepsis progression remains to be elucidated. Lipopolysaccharide (LPS) was used to induce a sepsis cell model. The expression levels of NEAT1 and microRNA (miR)-590-3p were determined by reverse transcription-quantitative PCR. Cell viability and apoptosis were detected using Cell Counting Kit-8 (CCK-8) assay and flow cytometry, respectively. Western blot analysis was performed to evaluate the levels of apoptosis- and NF-κB signaling pathway-related proteins. The concentration of inflammatory cytokines was determined using ELISA. In addition, dual-luciferase reporter assay, RNA immunoprecipitation and biotin-labeled RNA pull-down assay were performed to verify the interaction between NEAT1 and miR-590-3p. The results showed that NEAT1 was highly expressed in patients with sepsis and LPS-induced H9c2 cells. Knockdown of NEAT1 decreased LPS-induced cell apoptosis and inflammation response in H9c2 cells. Meanwhile, miR-590-3p showed decreased expression in sepsis, and its overexpression could relieve LPS-induced H9c2 cell damage. Further experiments revealed that NEAT1 could sponge miR-590-3p. Knockdown of miR-590-3p reversed the inhibitory effect of NEAT1 knockdown on LPS-induced H9c2 cell damage. Additionally, the NEAT1/miR-590-3p axis could regulate the activity of the NF-κB signaling pathway. To conclude, lncRNA NEAT1 accelerated apoptosis and inflammation in LPS-stimulated H9c2 cells via sponging miR-590-3p. These findings may provide a new strategy for the treatment of sepsis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app