Add like
Add dislike
Add to saved papers

xCT inhibitor sulfasalazine depletes paclitaxel-resistant tumor cells through ferroptosis in uterine serous carcinoma.

Oncology Letters 2020 September
Glutathione (GSH) is a primary antioxidant that protects cells against reactive oxygen species (ROS), and high levels of GSH promote cancer cell survival and resistance to chemotherapy. The glutamine transporter xCT is essential for the intracellular synthesis of GSH, whereby xCT determines the intracellular redox balance. However, whether xCT inhibition can overcome GSH-mediated resistance to chemotherapeutic agents in uterine serous carcinoma (USC) remains unclear. Thus, the present study investigated the effect of the xCT inhibitor, sulfasalazine (SAS) on cytotoxicity in paclitaxel-sensitive and -resistant USC cell lines. The molecular mechanism by which SAS induces ferroptotic cell death in paclitaxel-resistant cells was assessed. The results of the cytotoxicity assay demonstrated that SAS was more cytotoxic in paclitaxel-resistant cells compared with in -sensitive cells; however, paclitaxel cytotoxicity was not enhanced in either of the USC cell lines. Immunoblotting analysis and the cell death assays performed using ferroptosis inhibitors indicated that SAS-mediated cell death was induced through ferroptosis, and not apoptosis, in paclitaxel-resistant cells. Furthermore, ROS production was increased in paclitaxel-resistant but not in -sensitive cells, even at low SAS concentration, and JNK was activated, which is a downstream target in the Ras signaling pathway. Knockdown of JNK reversed the inhibitory effect of SAS on cell proliferation and cell death. The synthetic lethal interaction between ROS accumulation and Ras effector JNK activation may be critical for enhancing the sensitivity to ferroptotic cell death mediated by xCT inhibitor, SAS. Taken together, the results of the present study suggest that xCT inhibition may be an effective treatment for patients with recurrent paclitaxel-resistant USC.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app