Deciphering the vascular labyrinth: role of microRNAs and candidate gene SNPs in brain AVM development - literature review

Ioan Alexandru Florian, Teodora Larisa Timiș, Gheorghe Ungureanu, Ioan Stefan Florian, Adrian Bălașa, Ioana Berindan-Neagoe
Neurological Research 2020 July 28, : 1-12

BACKGROUND: Brain arteriovenous malformations (AVMs) are a relatively infrequent vascular pathology of unknown etiology that, despite their rarity, cause the highest number of hemorrhagic strokes under the age of 30 years. They pose a challenge to all forms of treatment due to their variable morphology, location, size, and, last but not least, evolving nature. MicroRNAs (miRNAs) are non-coding RNA strands that may suppress the expression of target genes by binding completely or partially to their complementary sequences. Single nucleotide polymorphisms (SNPs), as the name implies, are variations in a single nucleotide in the DNA, usually found in the non-coding segments. Although the majority of SNPs are harmless, some located in the proximity of candidate genes may result in altered expression or function of these genes and cause diseases or affect how different pathologies react to treatment. The roles miRNAs and certain SNPs play in the development and growth of AVMs are currently uncertain, yet progress in deciphering the minutiae of this pathology is already visible.

METHODS AND RESULTS: We performed an electronic Medline (PubMed, PubMed Central) and Google Academic exploration using permutations of the terms: "arteriovenous malformations," "single nucleotide polymorphisms," "microRNA," "non-coding RNA," and "genetic mutations." The findings were then divided into two categories, namely the miRNAs and the candidate gene SNPs associated with AVMs respectively. 6 miRNAs and 12 candidate gene SNPs were identified and discussed.

CONCLUSIONS: The following literature review focuses on the discoveries made in ascertaining the different implications of miRNAs and candidate gene SNPs in the formation and evolution of brain AVMs, as well as highlighting the possible directions of future research and biological treatment.

ABBREVIATIONS: ACVRL1/ALK1: activin receptor-like kinase 1; Akt: protein kinase B; ANGPTL4: angiopoietin-like 4; ANRIL: antisense noncoding RNA in the INK4 locus; AVM: arteriovenous malformation; AVM-BEC: arteriovenous malformation brain endothelial cell; BRCA1: breast cancer type 1 susceptibility protein; CCS: case-control study; CDKN2A/B: cyclin-dependent kinase inhibitor 2A/B; CLTC: clathrin heavy chain; DNA: deoxyribonucleic acid; ERK: extracellular signal-regulated kinase; GPR124: probable G-protein coupled receptor 124; GWAS: genome-wide association study; HHT: hereditary hemorrhagic telangiectasia; HIF1A: hypoxia-inducible factor 1A; IA: intracranial aneurysm; ICH: intracranial hemorrhage; Id-1: inhibitor of DNA-binding protein A; IL-17: interleukin 17; MAP4K3: mitogen-activated protein kinase kinase kinase kinase 3; miRNA: microRNA; MMP: matrix metalloproteinase; NFkB: nuclear factor kappa-light-chain of activated B cells; NOTCH: neurogenic locus notch homolog; p38MAPK: p38 mitogen-activated protein kinase; PI3K: phosphoinositide 3-kinase; RBBP8: retinoblastoma-binding protein 8; RNA: ribonucleic acid; SNAI1: Snail Family Transcriptional Repressor 1; SNP: single nucleotide polymorphism; SOX-17: SRY-related HMG-box; TGF-β: transformation growth factor β; TGFR: transformation growth factor receptor; TIMP-4, tissue inhibitor of metalloproteinase 4; TSP-1: thrombospondin-1; UTR: untranslated region; VEGF: Vascular Endothelial Growth Factor; VSMC: vascular smooth muscle cell; Wnt1: Wnt family member 1.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"