Add like
Add dislike
Add to saved papers

A new medical imaging technique for diagnosing dermatologic diseases; a clue to treatment choices.

Dermatologic Therapy 2020 April 22
Recently, it has been shown that DNA could emit some waves which carry main information about its evolution. Using this idea, we design a new method to image the behavior of skin cells, especially melanocytes, and diagnose their damage. In this method, we make use of a circuit which is formed from DNAs within the damaged melanocytes, a graphene sheet, DNAs within the healthy cells, and a scope. To amplify exchanged waves between hexagonal and pentagonal manifolds of DNAs, we induce some defects in the graphene sheets and replace some hexagonal molecules by pentagonal ones to build a structure similar to the structure of DNAs. We show that unprotected exposure to UVA and UVB damages the DNA in melanocyte cells, producing genetic defects, or mutations, that can lead to exchanged waves between cells and the emergence of a current in our circuit. By analyzing the evolution of this current, we can estimate the rate of destruction in melanocytes, and predict the emergence of cancer. This article is protected by copyright. All rights reserved.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app