Journal Article
Research Support, Non-U.S. Gov't
Review
Add like
Add dislike
Add to saved papers

Potential role of adenylyl cyclase 8 signaling complexes in regulating insulin secretion from pancreatic beta cells.

Glucose-stimulated insulin secretion from pancreatic β cells is mediated by Ca2+ influx and amplified by stimulation of GLP-1-receptors through cAMP-based signaling pathways. Interestingly, it has been found that glucose-induced Ca2+ signals can induce concurrent adenylyl cyclase isoform 8 (AC8)-mediated cAMP signals and, conversely, that GLP-1-receptor-mediated cAMP signals are able to induce Ca2+ signals. In this review, we explore the signaling complexes revolving around AC8 in modulating insulin release, from the initial discovery of the importance of this AC isoform to recent investigations of its interacting molecular partners. We suggest that investigating the structural assembly of the proteins associated with AC8 in β cells might reveal how this particular protein complex could be targeted to modify insulin secretion. Specifically, we suggest that disrupting the protein-protein interaction between A-kinase anchoring protein 79 (AKAP79) and AC8 could lead to disinhibition of AC8 activity and increased insulin secretion. Potentially, AC8 protein interactions could become a future target in type 2 diabetic patients with dysfunction of insulin secretion.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app