Add like
Add dislike
Add to saved papers

Isolation, characterization and application of theophylline-degrading Aspergillus fungi.

BACKGROUND: Caffeine, theobromine and theophylline are main purine alkaloid in tea. Theophylline is the downstream metabolite and it remains at a very low level in Camellia sinensis. In our previous study, Aspergillus sydowii could convert caffeine into theophylline in solid-state fermentation of pu-erh tea through N-demethylation. In this study, tea-derived fungi caused theophylline degradation in the solid-state fermentation. The purpose of this study is identify and isolate theophylline-degrading fungi and investigate their application in production of methylxanthines with theophylline as feedstock through microbial conversion.

RESULTS: Seven tea-derived fungi were collected and identified by ITS, β-tubulin and calmodulin gene sequences, Aspergillus ustus, Aspergillus tamarii, Aspergillus niger and A. sydowii associated with solid-state fermentation of pu-erh tea have shown ability to degrade theophylline in liquid culture. Particularly, A. ustus and A. tamarii could degrade theophylline highly significantly (p < 0.01). 1,3-dimethyluric acid, 3-methylxanthine, 3-methyluric acid, xanthine and uric acid were detected consecutively by HPLC in A. ustus and A. tamarii, respectively. The data from absolute quantification analysis suggested that 3-methylxanthine and xanthine were the main degraded metabolites in A. ustus and A. tamarii, respectively. 129.48 ± 5.81 mg/L of 3-methylxanthine and 159.11 ± 10.8 mg/L of xanthine were produced by A. ustus and A. tamarii in 300 mg/L of theophylline liquid medium, respectively.

CONCLUSIONS: For the first time, we confirmed that isolated A. ustus, A. tamarii degrade theophylline through N-demethylation and oxidation. We were able to biologically produce 3-methylxanthine and xanthine efficiently from theophylline through a new microbial synthesis platform with A. ustus and A. tamarii as appropriate starter strains.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app