Add like
Add dislike
Add to saved papers

Surveillance of antimicrobial susceptibilities reveals high proportions of multidrug resistance in toxigenic Clostridium difficile strains in different areas of Poland.

Anaerobe 2020 April
Two hundred and fifty-three non-duplicate toxigenic Clostridium difficile isolates, collected from February 2012 to December 2014, were evaluated for phenotypic resistance to ten antimicrobial drugs with the E-test gradient diffusion method. All strains of C. difficile were susceptible to metronidazole, vancomycin, and tigecycline. The metronidazole MIC values of the hyperepidemic PCR-ribotypes RT027 and RT176 were higher than those of non-epidemic PCR-ribotypes (p < 0.05, as evidenced by Mann-Whitney U test). In contrast, vancomycin susceptibility did not differ between hyperepidemic and non-epidemic strains, although the difference was almost significant (p = 0.065). Clostridium difficile RT027 and RT176 isolates could be assessed to five and four different susceptibility patterns, respectively, representing various combinations of resistance to different antimicrobial classes. A single point mutation (Thr82Ile) in the gyrA gene was detected in 11 (78.6%) of 14 isolates with high level of resistance to ciprofloxacin and moxifloxacin and four different types of single point mutations (Arg447Lys, Ser416Ala, Asp426Val, Asp426Asn) in the gyrB gene were detected in 4 strains, also with high level of resistance to ciprofloxacin and moxifloxacin. Four different point mutations were detected in the rpoB gene in 21 rifampicin-resistant strains of which one has not been reported previously, Gln489Leu. This study demonstrates the presence of multidrug-resistant C. difficile strains in Polish hospitals over the study period, irrespective of geographical location or reference level of the hospital.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app