Add like
Add dislike
Add to saved papers

LncRNA AK045171 protects the heart from cardiac hypertrophy by regulating the SP1/MG53 signalling pathway.

Aging 2020 Februrary 22
Hearts often undergo abnormal remodelling and hypertrophic growth in response to pathological stress. Long non-coding RNAs (LncRNAs) can change cardiac function and participate in regulation of cardiac hypertrophy. The present study aims to identify the role of AK045171 in cardiac hypertrophy and the underlying mechanism in hypertrophic cascades. Mice with cardiac hypertrophy were established through transverse aortic constriction (TAC). Cardiac hypertrophy in cardiomyocytes was induced by angiotensin II (angII). The expression of AK045171 and its target gene SP1 was examined in cardiomyocytes transfected with miRNA. The AK045171 expression level was downregulated in mice after TAC surgery. Overexpression of AK045171 attenuated cardiac hypertrophy both in vitro and in vivo. The mechanism study indicated that AK045171 binds with SP1, which promotes transcription activation of MEG3. It is suggested that overexpression of AK045171 might have clinical potential to suppress cardiac hypertrophy and heart failure.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app