Add like
Add dislike
Add to saved papers

Cost-effectiveness of stereotactic body radiation therapy versus video assisted thoracic surgery in medically operable stage I non-small cell lung cancer: A modeling study.

OBJECTIVES: Stage I non-small cell lung cancer (NSCLC) can be treated with either Stereotactic Body Radiotherapy (SBRT) or Video Assisted Thoracic Surgery (VATS) resection. To support decision making, not only the impact on survival needs to be taken into account, but also on quality of life, costs and cost-effectiveness. Therefore, we performed a cost-effectiveness analysis comparing SBRT to VATS resection with respect to quality adjusted life years (QALY) lived and costs in operable stage I NSCLC.

MATERIALS AND METHODS: Patient level and aggregate data from eight Dutch databases were used to estimate costs, health utilities, recurrence free and overall survival. Propensity score matching was used to minimize selection bias in these studies. A microsimulation model predicting lifetime outcomes after treatment in stage I NSCLC patients was used for the cost-effectiveness analysis. Model outcomes for the two treatments were overall survival, QALYs, and total costs. We used a Dutch health care perspective with 1.5 % discounting for health effects, and 4 % discounting for costs, using 2018 cost data. The impact of model parameter uncertainty was assessed with deterministic and probabilistic sensitivity analyses.

RESULTS: Patients receiving either VATS resection or SBRT were estimated to live 5.81 and 5.86 discounted QALYs, respectively. Average discounted lifetime costs in the VATS group were €29,269 versus €21,175 for SBRT. Difference in 90-day excess mortality between SBRT and VATS resection was the main driver for the difference in QALYs. SBRT was dominant in at least 74 % of the probabilistic simulations.

CONCLUSION: Using a microsimulation model to combine available evidence on survival, costs, and health utilities in a cost-effectiveness analysis for stage I NSCLC led to the conclusion that SBRT dominates VATS resection in the majority of simulations.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app