Add like
Add dislike
Add to saved papers

Alterations in innate immunity and epithelial cell differentiation are the molecular pillars of hidradenitis suppurativa.

BACKGROUND: The large unmet need of hidradenitis suppurativa/acne inversa (HS) therapy requires the elucidation of disease-driving mechanisms and tissue targeting.

OBJECTIVE: Robust characterization of the underlying HS mechanisms and detection of the involved skin compartments.

METHODS: Hidradenitis suppurativa/acne inversa molecular taxonomy and key signalling pathways were studied by whole transcriptome profiling. Dysregulated genes were detected by comparing lesional and non-lesional skin obtained from female HS patients and matched healthy controls using the Agilent array platform. The differential gene expression was confirmed by quantitative real-time PCR and targeted protein characterization via immunohistochemistry in another set of female patients. HS-involved skin compartments were also recognized by immunohistochemistry.

RESULTS: Alterations to key regulatory pathways involving glucocorticoid receptor, atherosclerosis, HIF1α and IL17A signalling as well as inhibition of matrix metalloproteases were detected. From a functional standpoint, cellular assembly, maintenance and movement, haematological system development and function, immune cell trafficking and antimicrobial response were key processes probably being affected in HS. Sixteen genes were found to characterize HS from a molecular standpoint (DEFB4, MMP1, GJB2, PI3, KRT16, MMP9, SERPINB4, SERPINB3, SPRR3, S100A8, S100A9, S100A12, S100A7A (15), KRT6A, TCN1, TMPRSS11D). Among the proteins strongly expressed in HS, calgranulin-A, calgranulin-B and serpin-B4 were detected in the hair root sheath, koebnerisin and connexin-32 in stratum granulosum, transcobalamin-1 in stratum spinosum/hair root sheath, small prolin-rich protein-3 in apocrine sweat gland ducts/sebaceous glands-ducts and matrix metallopeptidase-9 in resident monocytes.

CONCLUSION: Our findings highlight a panel of immune-related drivers in HS, which influence innate immunity and cell differentiation in follicular and epidermal keratinocytes as well as skin glands.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app