Add like
Add dislike
Add to saved papers

Characterization and evaluation of mycosterol secreted from endophytic strain of Gymnema sylvestre for inhibition of α-glucosidase activity.

Scientific Reports 2019 November 22
Endophytic fungi produce various types of chemicals for establishment of niche within the host plant. Due to symbiotic association, they secrete pharmaceutically important bioactive compounds and enzyme inhibitors. In this research article, we have explored the potent α-glucosidse inhibitor (AGI) produced from Fusarium equiseti recovered from the leaf of Gymnema sylvestre through bioassay-guided fraction. This study investigated the biodiversity, phylogeny, antioxidant activity and α-glucosidse inhibition of endophytic fungi isolated from Gymnema sylvestre. A total of 32 isolates obtained were grouped into 16 genera, according to their morphology of colony and spores. A high biodiversity of endophytic fungi were observed in G. sylvestre with diversity indices. Endophytic fungal strain Fusarium equiseti was identified through DNA sequencing and the sequence was deposited in GenBank database (https://ncbi.nim.nih.gov) with acession number: MF403109. The characterization of potent compound was done by FTIR, LC-ESI-MS and NMR spectroscopic analysis with IUPAC name 17-(5-ethyl-6-methylheptan-2-yl)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a] phenanthren-3-ol. The isolated bioactive compound showed significant α-amylase and α-glucosidase inhibition activity with IC50 values, 4.22 ± 0.0005 µg/mL and 69.72 ± 0.001 µg/mL while IC50 values of acarbose was 5.75 ± 0.007 and 55.29 ± 0.0005 µg/mL respectively. This result is higher in comparison to other previous study. The enzyme kinetics study revealed that bioactive compound was competitive inhibitor for α-amylase and α-glucosidase. In-silico study showed that bioactive compound binds to the binding site of α-amylase, similar to that of acarbose but with higher affinity. The study highlights the importance of endophytic fungi as an alternative source of AGI (α-glucosidase inhibition) to control the diabetic condition in vitro.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app