Add like
Add dislike
Add to saved papers

Oxaliplatin-induced neuropathy occurs through impairment of haemoglobin proton buffering and is reversed by carbonic anhydrase inhibitors.

Pain 2019 October 18
Oxaliplatin is a cornerstone chemotherapeutic used in the treatment of colorectal cancer, the third leading cause of death in Western countries. Most side effects of this platinum-containing drug are adequately managed in the clinic, although acute and long-term neurotoxicity still severely compromises the quality of life of patients treated with oxaliplatin. We have previously demonstrated that therapeutically relevant concentrations/doses of oxaliplatin lead to a reduction in intracellular pH in mouse dorsal root ganglion (DRG) neurons in vitro and in vivo and that this alteration sensitizes TRPA1 and TRPV1 channels, which most likely mediate the allodynia associated with treatment. In this study, we show that oxaliplatin leads to a reduction of intracellular pH by forming adducts with neuronal haemoglobin, which acts in this setting as a proton buffer. Furthermore, we show that FDA-approved drugs that inhibit carbonic anhydrase (an enzyme that is linked to haemoglobin in intracellular pH homeostasis), ie, topiramate and acetazolamide, revert (1) oxaliplatin-induced cytosolic acidification and TRPA1 and TRPV1 modulation in DRG neurons in culture, (2) oxaliplatin-induced cytosolic acidification of DRG of treated animals, and (3) oxaliplatin-induced acute cold allodynia in mice while not affecting OHP-induced cytotoxicity on cancer cells. Our data would therefore suggest that reversal of oxaliplatin-induced cytosolic acidification is a viable strategy to minimize acute oxaliplatin-induced symptoms.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app