Add like
Add dislike
Add to saved papers

A novel aspect of functionalized graphene quantum dots in cytotoxicity studies.

Graphene quantum dots (GQDs) represent a new generation of graphene-based nanomaterials with enormous potential for use and development of a variety of biomedical applications. However, up to now little studies have investigated the impact of GQDs on human health in case of exposure. GQDs were synthesized from citric acid as carbon precursor by hydrothermal treatment at 160 °C for 4 h. The synthesized GQDs showed strong blue emission under UV-Irradiation with fluorescence quantum yield of 9.8%. The obtained GQDs were further carbonized, activated and functionalized by nitric acid vapor method. Nitrogen adsorption/desorption isotherms were used to analyze the surface area and porous structures of GQDs. The results revealed that compared to GQDs, the specific surface area of functionalized graphene quantum dots (fGQDs) has been increased from 0.0667 to 2.5747 m2 /g and pore structures have been enhanced significantly. The potential cytotoxic effect of GQDs, fGQDs and GO suspensions was evaluated on HFF cell line using MTT assays and flow cytometry method after 24 h incubation. We have for the first time demonstrated that by carbonization, activation and functionalization of GQDs they still showed cytocompatible properties. We observed excellent biocompatibility of GQDs and fGQDs at low concentrations. Moreover, the results suggested that modification of GQDs yields product suspensions with high surface area, enhanced pore volume and loading capacities. Thus, fGQDs represent an attractive candidate for further use in drug delivery systems and bio-imaging application.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app