Add like
Add dislike
Add to saved papers

Exploring Inflammatory Mediators in Fetal and Maternal Compartments During Human Parturition.

OBJECTIVE: To examine inflammatory mediators in three fetomaternal biological compartments to inform theory related to the fetal and maternal inflammatory contributions to parturition at term and preterm.

METHODS: We conducted a cross-sectional study of amniotic fluid, cord blood, and maternal plasma from women with singleton pregnancies. Women had one of four conditions: term labor (n=11), term not in labor (n=13), spontaneous preterm birth with intact membranes (preterm birth; n=13), or preterm prelabor rupture of membranes (PROM; n=8). We measured two damage-associated molecular pattern markers (high-mobility group box-1 [HMGB1] and uric acid) and two acute phase response markers (interleukin [IL]-6 and C-reactive protein [CRP]) using enzyme-linked immunosorbent assay. The distribution of each analyte within amniotic fluid, cord blood, and maternal plasma across the four conditions (term not in labor, term labor, preterm birth, and preterm PROM) were calculated. To explore whether there were distributional differences in each analyte across each of the four labor conditions, we used a nonparametric Kruskal-Wallis test. For analytes that differed across groups, we further compared distributions by labor group (term labor vs term not in labor, and preterm PROM vs preterm birth).

RESULTS: Fetal compartments (amniotic fluid and cord blood) showed higher HMGB1 in term labor vs term not in labor and preterm PROM vs preterm birth. Amniotic fluid IL-6, cord blood CRP and cord blood uric acid were higher in term vs term not in labor. Cord blood uric acid was higher in preterm PROM vs preterm birth. Only maternal plasma IL-6 was higher in term labor vs term not in labor.

CONCLUSION: Accumulation of HMGB1 and an overall increase in inflammation observed on the fetal side, but not the maternal side, may be signals of parturition. Understanding fetal-derived proparturition inflammatory signals at term and preterm, especially in preterm PROM, might provide fetal-specific biomarkers and identify underlying mechanisms and targets for interventions to reduce the risk of preterm birth and preterm PROM.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app