Add like
Add dislike
Add to saved papers

SCN11A mRNA levels in female bipolar disorder PBMCs as tentative biomarker for distinct patient sub-phenotypes.

Drug Development Research 2019 September 10
Bipolar disorder (BD) is a complex neuropsychiatric disorder characterized by recurrent mania and depression episodes and requiring lifelong treatment with mood stabilizing drugs. Several lines of evidence, including with BD patient iPSC-derived neurons, suggest that neuronal hyperexcitability may underlie the key clinical symptoms of BD. Indeed, higher mRNA levels of SCN11A, coding for the voltage-gated sodium channel NaV 1.9 implicated in nociception, were detected in iPSC-derived neurons from BD patients, and were normalized by in vitro lithium. Here we studied SCN11A expression in peripheral blood mononuclear cells (PBMCs) from well-phenotyped female BD patients and controls and evaluated their association with several clinical sub-phenotypes. We observed higher mRNA levels of SCN11A in PBMCs from female BD patients with no records of alcohol dependence (p = .0050), no records of psychosis (p = .0097), or no records of suicide attempts (p = .0409). A trend was observed for higher SCN11A expression (FD = 1.91; p = .052) in BD PBMCs compared with controls. Datamining of published postmortem gene expression datasets indicated higher SCN11A expression in dorsolateral prefrontal cortex and orbitofrontal cortex tissues from BD patients compared with controls. Higher phenotype-associated expression levels in PBMC from BD patients were also observed for ID2 (alcohol dependence, suicide attempts) and HDGFRP3 (seasonal BD pattern). Our findings suggest that higher PBMC SCN11A expression levels may be associated with certain behavioral BD sub-phenotypes, including lack of alcohol dependence and psychosis, among BD patients. The NaV 1.9 voltage-gated sodium channel thus deserves consideration as a tentative phenotype modifier in BD.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app