Add like
Add dislike
Add to saved papers

Breast Tumor Detection and Classification Using Intravoxel Incoherent Motion Hyperspectral Imaging Techniques.

Breast cancer is a main cause of disease and death for women globally. Because of the limitations of traditional mammography and ultrasonography, magnetic resonance imaging (MRI) has gradually become an important radiological method for breast cancer assessment over the past decades. MRI is free of the problems related to radiation exposure and provides excellent image resolution and contrast. However, a disadvantage is the injection of contrast agent, which is toxic for some patients (such as patients with chronic renal disease or pregnant and lactating women). Recent findings of gadolinium deposits in the brain are also a concern. To address these issues, this paper develops an intravoxel incoherent motion- (IVIM-) MRI-based histogram analysis approach, which takes advantage of several hyperspectral techniques, such as the band expansion process (BEP), to expand a multispectral image to hyperspectral images and create an automatic target generation process (ATGP). After automatically finding suspected targets, further detection was attained by using kernel constrained energy minimization (KCEM). A decision tree and histogram analysis were applied to classify breast tissue via quantitative analysis for detected lesions, which were used to distinguish between three categories of breast tissue: malignant tumors (i.e., central and peripheral zone), cysts, and normal breast tissues. The experimental results demonstrated that the proposed IVIM-MRI-based histogram analysis approach can effectively differentiate between these three breast tissue types.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app