Add like
Add dislike
Add to saved papers

Why intraperitoneal glucose sensing is sometimes surprisingly rapid and sometimes slow: A hypothesis.

Medical Hypotheses 2019 July 21
The artificial pancreas requires fast and reliable glucose measurements. The peritoneal space has shown promising results, and in one of our studies we detected glucose changes in the peritoneal space already at the same time as in the femoral artery. The peritoneal lining is highly vascularised, covered by a single layer of mesothelial cells and therefore easily accessible for proper sensor technology, e.g. optical technology. We hypothesize that the rapid intraperitoneal glucose dynamics observed in our study was possible because the sensors were located directly at the peritoneal lining, at the point where the glucose molecules entered the peritoneal space. Glucose travels slowly in fluids by diffusion, and a longer distance between the sensor and the peritoneal lining would consequently result in slower dynamics. We therefore propose to place the glucose sensor in an artificial pancreas as closely to the peritoneal lining as possible, or even utilize appropriate sensor technology to measure glucose in the peritoneal lining itself.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app