Add like
Add dislike
Add to saved papers

University of Wisconsin solution for the xeno-free storage of adipose tissue-derived microvascular fragments.

Aim: Adipose tissue-derived microvascular fragments (ad-MVF) are vascularization units for regenerative medicine. We investigated whether University of Wisconsin (UW) solution is suitable for their xeno-free storage. Materials & methods: Murine ad-MVF were cultivated for 24 h in 4°C or 20°C UW solution and 20°C endothelial cell growth medium (control). The ad-MVF were seeded onto collagen-glycosaminoglycan scaffolds, which were analyzed in dorsal skinfold chambers by intravital fluorescence microscopy and histology. Results: All implants exhibited microvascular networks on day 14 with the highest functional microvessel density in controls. Ad-MVF cultivation in UW solution at 4°C resulted in an improved scaffold vascularization compared with cultivation at 20°C. Conclusion: UW solution is suitable for the hypothermic storage of ad-MVF.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app