Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Association of Choroid Plexus Enlargement With Cognitive, Inflammatory, and Structural Phenotypes Across the Psychosis Spectrum.

OBJECTIVE: The choroid plexus is an important physiological barrier and produces CSF and neurotrophic, angiogenic, and inflammatory factors involved in brain development. Choroid plexus abnormalities have been implicated in both schizophrenia and bipolar disorder. A previous choroid plexus transcriptomic analysis of schizophrenia identified an upregulation of immune and inflammatory genes that correlated with peripheral inflammatory markers. The purpose of this study was to examine choroid plexus volume in probands across the psychosis spectrum and in their first-degree and axis II cluster A relatives, as well as choroid plexus familiality and choroid plexus covariance with clinical, cognitive, brain, and peripheral marker measures.

METHODS: Choroid plexus volume was quantified (using FreeSurfer) in psychosis probands, their first-degree and axis II cluster A relatives, and healthy control subjects, organized by DSM-IV-TR diagnosis. Analyte, structural connectivity, and genotype data were collected from a subset of study subjects.

RESULTS: Choroid plexus volume was significantly larger in probands compared with first-degree relatives or healthy control subjects; first-degree relatives had intermediate enlargement compared with healthy control subjects; and total choroid plexus volume was significantly heritable. Larger volume was associated with worse cognition, smaller total gray matter and amygdala volume, larger lateral ventricle volume, and lower structural connectivity in probands. Associations between larger volume and higher levels of interleukin 6 in probands was also observed.

CONCLUSIONS: These findings suggest the involvement of the choroid plexus across the psychosis spectrum with a potential pathophysiological mechanism involving the neuroimmune axis, which functions in maintaining brain homeostasis and interacting with the peripheral immune and inflammatory system. The choroid plexus may be an important target in future research.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app