Add like
Add dislike
Add to saved papers

Impact of shale gas development on regional water resources in China from water footprint assessment view.

Shale gas production in China could strengthen energy security while cutting CO2 emissions for China. However, the availability of and access to water could become major issue for shale gas development in certain parts of China. This study aims to estimate the water intensity (WI) of shale gas extraction in China, and to examine the impact of regional shale gas development on local water resources, from the water footprint (WF) point of view. Results of this study indicate that WI of shale gas is in the range of 0.3-9.9 kg per m3 shale gas produced. For a single well, total WF is 549,994 m3 , includes 35,469 m3 blue WF and 514,525 m3 grey WF. A large amount of wastewater generated during gas production is the major impact factor to high grey WF. To achieve 80 billion m3 /year of shale gas production in 2030, 27-792 million m3 water will be demanded in that year. Water use for shale gas development will account for 0.03-0.4% and 0.1-1.5% of the local water supply, in the base case and the worst case, respectively. Although a large amount of water will be demand for shale gas production, it will not affect the local water supply significantly.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app