Add like
Add dislike
Add to saved papers

Cholesterol Starvation and Hypoxia Activate the FVII Gene via the SREBP1-GILZ Pathway in Ovarian Cancer Cells to Produce Procoagulant Microvesicles.

Interaction between the transcription factors, hypoxia-inducible factor (HIF1α and HIF2α) and Sp1, mediates hypoxia-driven expression of FVII gene encoding coagulation factor VII (fVII) in ovarian clear cell carcinoma (CCC) cells. This mechanism is synergistically enhanced in response to serum starvation, a condition possibly associated with tumor hypoxia. This transcriptional response potentially results in venous thromboembolism, a common complication in cancer patients by producing procoagulant extracellular vesicles (EVs). However, which deficient serum factors are responsible for this characteristic transcriptional mechanism is unknown. Here, we report that cholesterol deficiency mediates synergistic FVII expression under serum starvation and hypoxia (SSH) via novel sterol regulatory element binding protein-1 (SREBP1)-driven mechanisms. Unlike conventional mechanisms, SREBP1 indirectly enhances FVII transcription through the induction of a new target, glucocorticoid-induced leucine zipper (GILZ) protein. GILZ expression induced in response to hypoxia by a HIF1α-dependent mechanism activates SREBP1 under SSH, suggesting reciprocal regulation between SREBP1 and GILZ. Furthermore, GILZ binds to the FVII locus. Xenograft tumor samples analyzed by chromatin immunoprecipitation confirmed that HIF1α-aryl hydrocarbon nuclear translocator and GILZ bind to the TSC22D3 (GILZ) and FVII gene loci, respectively, thereby potentially modulating chromatin function to augment FVII transcription. Thus, deficiency of both O2 and cholesterol, followed by interplay between HIFs, Sp1, and SREBP1-GILZ pathways synergistically induce fVII synthesis, resulting in the shedding of procoagulant EVs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app