Add like
Add dislike
Add to saved papers

The role of catalases in the prevention/promotion of oxidative stress.

Catalases, heme enzymes which catalyze decomposition of hydrogen peroxide to water and molecular oxygen, are important members of the antioxidant defense system of cells of almost all aerobic organisms. However, recent studies suggest that catalase may be involved in various other processes in the cell. The paper provides a review of reactions of catalases with their main substrate, hydrogen peroxide, and with oxidizing species such as hydroxyl radical, superoxide, nitric oxide, peroxynitrite, hypochlorous acid, and singlet oxygen. A number of these individuals are formed under oxidative eustress (good stress) as well as distress (bad stress), while others only under conditions of oxidative distress. Potential biological significance of the reactions of mammalian as well as bacterial catalases with oxidizing species is discussed. The majority of these reactions inhibit catalase. Authors emphasize that catalase inhibition, which may lead to significant increase of the local concentration of hydrogen peroxide, may be detrimental to the neighboring tissues, but in some pathological states (e.g. the defense directed against pathogenic bacteria rich in catalase, or induction of apoptosis of cancer cells which possess membrane-associated catalase) it may be beneficial for the host organism.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app