Add like
Add dislike
Add to saved papers

Biomechanical comparison of four prosthetic ligament repair techniques for tarsal medial collateral ligament injury in dogs.

OBJECTIVE: To compare joint stability and ultimate strength among 4 prosthetic ligament constructs for repair of tarsal medial collateral ligament (MCL) injury in dogs.

SAMPLE: 13 canine cadavers (26 hind limbs).

PROCEDURES: Each limb was stripped of all soft tissues except those associated with the tarsal joint and assigned to 1 of 4 prosthetic ligament constructs. The AN construct consisted of 3 bone anchors connected with monofilament nylon suture. The AU construct consisted of low-profile suture anchors connected with multifilament ultrahigh-molecular-weight polyethylene (UHMWPE) suture. The TN and TU constructs involved the creation of 3 bone tunnels and use of nylon or UHMWPE suture, respectively. Each limb underwent biomechanical testing before and after MCL transection and before and after cyclic range-of-motion testing following completion of the assigned construct. Tarsal joint stability (extent of laxity) was assessed with the joint in each of 3 positions (75°, 135°, and 165°). After completion of biomechanical testing, each limb was tested to failure to determine the ultimate strength of the construct.

RESULTS: Relative to intact tarsal joints, joint laxity was significantly increased following completion of all 4 constructs. Construct type was not associated with the magnitude of change in joint laxity. Ultimate strength was greatest for the UHMWPE-suture constructs.

CONCLUSIONS AND CLINICAL RELEVANCE: Results indicated that all 4 constructs effectively stabilized MCL-deficient tarsal joints. Implants used for the TU, TN, and AU constructs had a lower profile than those used for the AN construct, which may be clinically advantageous. In vivo studies are warranted.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app