Add like
Add dislike
Add to saved papers

TLR2 and TLR4 mediate an activation of adipose tissue renin-angiotensin system induced by uric acid.

Biochimie 2019 April 17
Both hyperuricemia and adipose tissue renin-angiotensin system (RAS) are closely associated with multiple metabolic and cardiovascular diseases. We previously reported that uric acid could upregulate tissue RAS in adipocytes. In the present study, we aimed to reveal the involvement of toll-like receptors (TLRs) in uric acid-induced RAS activation in adipose tissue. A hyperuricemia rat model fed with a high-fructose diet and rat primary adipocytes were used in this study. Here, we inhibited TLR2 and TLR4 expression in adipose tissue and cultured adipocytes using small interfering RNA (siRNA). We found that high fructose-fed rats had hyperuricemia, higher body weight and greater adipose tissue content. We also found that hyperuricemia rats had raising blood pressure, higher expression levels of inflammatory cytokines and RAS components in adipose tissue, which could be prevented by TLR2/4-siRNA infection. In vitro study, uric acid caused a dose- and time-dependent increase in the mRNA expression of TLR2 and TLR4 in rat adipocytes. Uric acid could increase inflammatory cytokines and upregulate tissue RAS in rat adipocytes, which were both blocked with TLR2/4-siRNA infection. TNF-α and IL-6 could also result in an activation of tissue RAS expression in adipocytes. In conclusion, TLR2/4 mediated adipose inflammation plays a key role in RAS activation induced by uric acid in adipose tissue.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app