Add like
Add dislike
Add to saved papers

Estrogen stimulates female cancer progression by inducing myeloid-derived suppressive cells: investigations on pregnant and non-pregnant experimental models.

Oncotarget 2019 March 9
OBJECTIVE: To investigate the clinical implications of 17β-estradiol (E2) in estrogen receptor α (ERα)-negative female cancer progression as well as the underlying biological mechanisms.

METHODS: Clinical data from 306 locally-advanced cervical cancer (stage IIB-IVA) patients were analyzed in order to investigate the relationships between age, serum E2 levels, and treatment outcomes. Clinical samples, ERα-negative cervical and breast cancer cell lines, and mouse xenograft models of cervical and breast cancers were employed in order to elucidate the mechanisms responsible for the E2- and pregnancy-mediated progression of cervical and breast cancers, with a focus on the role of myeloid-derived suppressor cells (MDSC).

RESULTS: Younger patients with elevated E2 levels showed significantly shorter progression-free survival ( P = 0.040) and overall survival ( P = 0.039). The exogenous E2 treatment stimulated the mobilization of MDSC from bone marrow and directly augmented their suppressive activities, leading to the progression of ERα-negative cervical and breast cancers. The co-administration of an anti-Gr-1 neutralizing antibody with E2 prevented the E2-mediated induction of MDSC, and attenuated E2-mediated tumor growth in cervical and breast cancer xenografts. Significantly increased MDSC numbers and enhanced tumor growth were observed during pregnancy in mice with cervical or breast cancer. Significantly increased MDSC numbers were also observed during pregnancy in cervical cancer patients.

CONCLUSIONS: E2 facilitates the progression of ERα-negative cervical or breast cancer under non-pregnant and pregnant conditions by inducing MDSC. MDSC inhibition therapy may have therapeutic efficacy in premenopausal or pregnant female cancer patients.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app