Add like
Add dislike
Add to saved papers

Full-length human surfactant protein A inhibits influenza A virus infection of A549 lung epithelial cells: A recombinant form containing neck and lectin domains promotes infectivity.

Immunobiology 2019 Februrary 12
Hydrophilic lung surfactant proteins have emerged as key immunomodulators which are potent at the recognition and clearance of pulmonary pathogens. Surfactant protein A (SP-A) is a surfactant-associated innate immune molecule, which is known to interact with a variety of pathogens, and display anti-microbial effects. SP-A, being a carbohydrate pattern recognition molecule, has a wide range of innate immune functions against respiratory pathogens, including influenza A virus (IAV). Some pandemic pH1N1 strains resist neutralization by SP-A due to differences in the N-glycosylation of viral hemagglutinin (HA). Here, we provide evidence, for the first time, that a recombinant form of human SP-A (rfhSP-A), composed of α-helical neck and carbohydrate recognition domains, can actually promote the IAV replication, as observed by an upregulation of M1 expression in lung epithelial cell line, A549, when challenged with pH1N1 and H3N2 IAV subtypes. rfhSP-A (10 μg/ml) bound neuraminidase (NA) (∼60 kDa), matrix protein 1 (M1) (∼25 kDa) and M2 (∼17 kDa) in a calcium dependent manner, as revealed by far western blotting, and direct binding ELISA. However, human full length native SP-A downregulated mRNA expression levels of M1 in A549 cells challenged with IAV subtypes. Furthermore, qPCR analysis showed that transcriptional levels of TNF-α, IL-12, IL-6, IFN-α and RANTES were enhanced following rfhSP-A treatment by both IAV subtypes at 6 h post-IAV infection of A549 lung epithelial cells. In the case of full length SP-A treatment, mRNA expression levels of TNF-α and IL-6 were downregulated during the mid-to-late stage of IAV infection of A549 cells. Multiplex cytokine/chemokine array revealed enhanced levels of both IL-6 and TNF-α due to rfhSP-A treatment in the case of both IAV subtypes tested, while no significant effect was seen in the case of IL-12. Enhancement of IAV infection of pH1N1 and H3N2 subtypes by truncated rfhSP-A, concomitant with infection inhibition by full-length SP-A, appears to suggest that a complete SP-A molecule is required for protection against IAV. This is in contrast to a recombinant form of trimeric lectin domains of human SP-D (rfhSP-D) that acts as an entry inhibitor of IAV.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app