Add like
Add dislike
Add to saved papers

Interactions of plant growth responses to spring freezing and summer drought: a multispecies comparison.

PREMISE OF THE STUDY: Freezing and drought both result in cellular dehydration, and similar physiological responses to these stressors may result in cross acclimation, whereby prior freezing exposure increases subsequent drought tolerance. We examined how spring freezing influences summer drought tolerance for a range of herbaceous old field species: 6 graminoids (Agrostis stolonifera, Arrhenatherum elatius, Bromus inermis, Festuca rubra, Lolium perenne, Poa compressa) and 2 forbs (Plantago lanceolata, Securigera varia), with the goal of examining the generality of cross acclimation responses.

METHODS: We exposed the plants to -5°C in the spring and to a 3-week summer drought, and harvested the plants after a 3-week watering/recovery period. We also measured leaf soluble proteins and sugars to explore the potential mechanisms before and during drought stress.

KEY RESULTS: For Agrostis stolonifera, Bromus inermis, Lolium perenne, Plantago lanceolata, and Poa compressa there was evidence of cross acclimation based on aboveground or belowground biomass, with a reduction in the severity of the drought effect for the plants previously exposed to freezing. Freezing and drought effects were additive for Arrhenatherum elatius, and for the remaining two species the test of the freezing-drought interaction was inconclusive, because significant drought and freezing effects did not co-occur. When present, freezing-drought interactions were not correlated with changes in leaf soluble protein or sugars.

CONCLUSIONS: Our results reveal that the phenomenon of freezing-drought cross acclimation appears to be common in herbaceous species, and variation among species in cross acclimation indicates that multiple stresses could alter relative species abundances in plant communities.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app