Add like
Add dislike
Add to saved papers

Photobiomodulation can improve ovarian activity in polycystic ovary syndrome-induced rats.

Follicular cystic ovary disease is a common reproductive disorder in women and females of domestic animals, characterized by anovulation and the persistence of follicle is a common cause of reproductive failure in mammalian. Polycystic ovary syndrome (PCOS) is characterized by hyperandrogenism (HA), chronic anovulation and polycystic ovaries, and it is a common reproductive endocrine disease with clinical manifestations including hirsutism, acne, infertility and obesity that can affect 5-20% of women in their reproductive age. Photobiomodulation (PBM) has been investigated and used in clinical practice, related to biomodulatory influences on cellular functions in animals and humans, both in vivo and in vitro. In this study, we include endocrine and reproductive features in a rat model for PCOS and the effects of PBM on ovarian activities. Forty-five adult female Wistar rats PCOS-induced by a single dose of the estradiol valerate (EV) were used in the study. After the EV injection for PCO induction, rats were divided into 9 groups (n = 5/group) named C30, C45 and C60 (Control group), S30, S45 and S60 (PCO group) and L30, L45 and L60 (PCO/Laser group). The rats were irradiated with laser 3 times/week. The results shown that EV PCO-induced rats had increased body mass, reduced ovary mass, and reduced GSI. The plasma levels of P4 and T were increased, and the LH plasma level was decreased by PBM stimulation. The number of ovarian follicles and corpus luteum were increased, and the number of ovarian cysts was decreased by PBM stimulation. Thus, reproductive and endocrine characteristics were modulated by PBM.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app