Add like
Add dislike
Add to saved papers

Hypomethylation-mediated activation of cancer/testis antigen KK-LC-1 facilitates hepatocellular carcinoma progression through activating the Notch1/Hes1 signalling.

OBJECTIVES: Kita-Kyushu lung cancer antigen-1 (KK-LC-1) is a cancer/testis antigen reactivated in several human malignancies. So far, the major focus of studies on KK-LC-1 has been on its potential as diagnostic biomarker and immunotherapy target. However, its biological functions and molecular mechanisms in cancer progression remain unknown.

MATERIALS AND METHODS: Expression of KK-LC-1 in HCC was analysed using RT-qPCR, Western blot and immunohistochemistry. The roles of KK-LC-1 on HCC progression were examined by loss-of-function and gain-of-function approaches. Pathway inhibitor DAPT was employed to confirm the regulatory effect of KK-LC-1 on the downstream Notch signalling. The interaction of KK-LC-1 with presenilin-1 was determined by co-immunoprecipitation. The association of CpG island methylation status with KK-LC-1 reactivation was evaluated by methylation-specific PCR, bisulphite sequencing PCR and 5-Aza-dC treatment.

RESULTS: We identified that HCC tissues exhibited increased levels of KK-LC-1. High KK-LC-1 level independently predicted poor survival outcome. KK-LC-1 promoted cell growth, migration, invasion and epithelial-mesenchymal transition in vitro and in vivo. KK-LC-1 modulated the Notch1/Hes1 pathway to exacerbate HCC progression through physically interacting with presenilin-1. Upregulation of KK-LC-1 in HCC was attributed to hypomethylated CpG islands.

CONCLUSIONS: This study identified that hypomethylation-induced KK-LC-1 overexpression played an important role in HCC progression and independently predicted poor survival. We defined the KK-LC-1/presenilin-1/Notch1/Hes1 as a novel signalling pathway that was involved in the growth and metastasis of HCC.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app