Journal Article
Multicenter Study
Randomized Controlled Trial
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Early goal-directed haemodynamic optimization of cerebral oxygenation in comatose survivors after cardiac arrest: the Neuroprotect post-cardiac arrest trial.

AIMS: During the first 6-12 h of intensive care unit (ICU) stay, post-cardiac arrest (CA) patients treated with a mean arterial pressure (MAP) 65 mmHg target experience a drop of the cerebral oxygenation that may cause additional cerebral damage. Therefore, we investigated whether an early goal directed haemodynamic optimization strategy (EGDHO) (MAP 85-100 mmHg, SVO2 65-75%) is safe and could improve cerebral oxygenation, reduce anoxic brain damage, and improve outcome when compared with a MAP 65 mmHg strategy.

METHODS AND RESULTS: A total of 112 out-of-hospital CA patients were randomly assigned to EGDHO or MAP 65 mmHg strategies during the first 36 h of ICU stay. The primary outcome was the extent of anoxic brain damage as quantified by the percentage of voxels below an apparent diffusion coefficient (ADC) score of 650.10-6 mm2/s on diffusion weighted magnetic resonance imaging (at day 5 ± 2 post-CA). Main secondary outcome was favourable neurological outcome (CPC score 1-2) at 180 days. In patients assigned to EGDHO, MAP (P < 0.001), and cerebral oxygenation during the first 12 h of ICU stay (P = 0.04) were higher. However, the percentage of voxels below an ADC score of 650.10-6 mm2/s did not differ between both groups [16% vs. 12%, odds ratio 1.37, 95% confidence interval (CI) 0.95-0.98; P = 0.09]. Also, the number of patients with favourable neurological outcome at 180 days was similar (40% vs. 38%, odds ratio 0.98, 95% CI 0.41-2.33; P = 0.96). The number of serious adverse events was lower in patients assigned to EGDHO (P = 0.02).

CONCLUSION: Targeting a higher MAP in post-CA patients was safe and improved cerebral oxygenation but did not improve the extent of anoxic brain damage or neurological outcome.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app