Add like
Add dislike
Add to saved papers

Establishment of gene-edited pigs expressing human blood coagulation factor VII and albumin for bioartificial liver use.

BACKGROUND AND AIM: Bioartificial livers (BALs) are considered as a solution to bridge patients with acute liver failure to liver transplantation or to assist in spontaneous recovery for patients with end-stage liver disease. Pig is the best donor of hepatocytes for BALs in clinical trials, because metabolic and detoxification function of its liver are close to human. However, using pig hepatocytes for BALs remains controversial for safety concern owing to nonhuman proteins secretion. Herein, we attempt to establish modified pigs expressing humanized liver proteins, blood coagulation factor VII (F7) and albumin (ALB). These pigs should also be porcine endogenous retrovirus subtype C (PERV-C) free so that their ability of transmitting PERV to human could be diminished seriously.

METHODS: We devised both homology-dependent and independent knock-in approaches to insert a fusion of hF7 and hALB gene downstream the site of pig endogenous F7 promoter in pig fetal fibroblasts negative for PERV-C. The modified pigs were then generated through somatic cell nuclear transfer.

RESULTS: We obtained 14 and 10 cloned pigs by homology-dependent and independent approaches, respectively. Among them, 19 cloned pigs were with expected gene modification and 13 are alive to date. These modified pigs can successfully express hF7 and hALB in the liver and serum, and the expressed hF7 exhibits normal coagulation activity.

CONCLUSIONS: The gene-edited pigs expressing hF7 and hALB in the liver were generated successfully. We anticipate that our pigs could provide an alternative cell source for BALs as a promising treatment for patients with acute liver failure.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app