Add like
Add dislike
Add to saved papers

Iron induces insulin resistance in cardiomyocytes via regulation of oxidative stress.

Scientific Reports 2019 March 16
Iron overload is associated with various pathological changes which contribute to heart failure. Here, we examined mechanisms via which iron alters cardiomyocyte insulin sensitivity. Treatment of primary adult and neonatal cardiomyocytes as well as H9c2 cells with iron decreased insulin sensitivity determined via Western blotting or immunofluorescent detection of Akt and p70S6K phosphorylation and glucose uptake. Using CellROX deep red or DCF-DA probes we also observed that iron increased generation of reactive oxygen species (ROS), and that pretreatment with the superoxide dismutase mimetic MnTBAP reduced ROS production and attenuated iron-induced insulin resistance. SKQ1 and allopurinol but not apocynin reduced iron-induced ROS suggesting mitochondria and xanthine oxidase contribute to cellular ROS in response to iron. Western blotting for LC3-I, LC3-II and P62 levels as well as immunofluorescent co-detection of autophagosomes with Cyto-ID and lysosomal cathepsin activity indicated that iron attenuated autophagic flux without altering total expression of Atg7 or beclin-1 and phosphorylation of mTORC1 and ULK1. This conclusion was reinforced via protein accumulation detected using Click-iT HPG labelling after iron treatment. The adiponectin receptor agonist AdipoRon increased autophagic flux and improved insulin sensitivity both alone and in the presence of iron. We created an autophagy-deficient cell model by overexpressing a dominant-negative Atg5 mutant in H9c2 cells and this confirmed that reduced autophagy flux correlated with less insulin sensitivity. In conclusion, our study showed that iron promoted a cascade of ROS production, reduced autophagy and insulin resistance in cardiomyocytes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app