Add like
Add dislike
Add to saved papers

Comparative metabolomic profiling in the roots and leaves in contrasting genotypes reveals complex mechanisms involved in post-anthesis drought tolerance in wheat.

Understanding the contrasting biochemical changes in different plant parts in response to drought can help to formulate smart strategies to develop drought tolerant genotypes. The current study used metabolomics and physiological approaches to understand the differential biochemical changes coupled with physiological adjustments in leaves and roots to cope with drought stress in two wheat genotypes, LA754 (drought tolerant) and AGS2038 (drought sensitive). The gas chromatography-mass spectrometry (GC-MS) analysis and physiological trait estimation were performed in the roots and leaves after drought imposition. Drought induced reduction was observed in all physiological and yield related traits. In LA754, higher numbers of metabolites were altered in leaves (45) compared to roots (20) which indicates that plants allocated more resources to leaves in tolerant genotype. In addition, the metabolic components of the root were less affected by the stress which supports the idea that the roots are more drought tolerant than the leaf or shoot. In AGS2038, thirty and twenty eight metabolites were altered in the leaves and roots, respectively. This indicates that the sensitive genotype compromised resource allocation to leaves, rather allocated more towards roots. Tryptophan, valine, citric acid, fumaric acid, and malic acid showed higher accumulation in leaf in LA754, but decreased in the root, while glyceric acid was highly accumulated in the root, but not in the leaf. The results demonstrated that the roots and shoots have a different metabolic composition, and shoot metabolome is more variable than the root metabolome. Though the present study demonstrated that the metabolic response of shoots to drought contrasts with that of roots, some growth metabolites (protein, sugar, etc) showed a mirror increase in both parts. Protein synthesis and energy cycle was active in both organs, and the organs were metabolically activated to enhance water uptake and maintain growth to mitigate the effect of drought.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app