Add like
Add dislike
Add to saved papers

Reduction of magnetic resonance image artifacts of NiTi implant by carbon coating.

A paramagnetic NiTi substrate was coated with diamagnetic carbon materials, i.e., graphene, graphene oxide (GO), and carbon nanotubes (CNTs), in order to reduce magnetic resonance (MR) image artifacts of NiTi implants. The present study focused on the effect of magnetic susceptibility variations in NiTi caused by the carbon coating on MR image artifacts. In the case of the graphene and GO coatings, the reduction of the magnetic susceptibility was greater along the perpendicular direction than the parallel direction. In contrast, the CNT coating exhibited a larger reduction along the parallel direction. The reduction of magnetic susceptibility measured in CNT-coated NiTi (CNT/NiTi) was smaller than the theoretical prediction especially when measured along the parallel direction, because CNTs on the NiTi surface were randomly arranged, rather than in a single direction. MR image artifacts were substantially reduced in all carbon-coated NiTi specimens, which is due to the reduction of magnetic susceptibility in NiTi by the carbon coating. This method can also be applied to other paramagnetic bio-metallic materials such as Co-Cr.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app