Journal Article
Review
Add like
Add dislike
Add to saved papers

An industry perspective: a streamlined screening strategy using alternative models for chemical assessment of developmental neurotoxicity.

Neurotoxicology 2019 Februrary 18
Developmental neurotoxicity (DNT) is an important endpoint for the safety assessment of chemicals. However, the current in vivo animal model for DNT assessment is resource-intensive and may not fully capture all mechanisms that may be relevant to DNT in humans. As a result, there is a growing need for more reliable, time- and cost-efficient approaches for DNT evaluation. Towards this end, many stem/progenitor cell-based in vitro models and alternative organism-based models are becoming available with the potential for high throughput screening of DNT. Meanwhile, with advances in the knowledgebase of DNT molecular mechanisms and the identification of DNT-related adverse outcome pathways (AOP) there is potential to develop a mechanism-based integrated testing strategy for DNT assessment. This review summarizes the state of science regarding currently available human stem/progenitor cell-based in vitro models and alternative organism-based models that could be used for DNT testing. In addition, the current knowledge regarding DNT AOPs is reviewed to identify common key events that could serve as critical endpoints to assess multiple AOPs that underlie DNT. Following the identification of common key events, a streamlined strategy is proposed using alternative models to assess the DNT potential of chemicals as an early screening approach for chemicals in development.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app