Add like
Add dislike
Add to saved papers

Complement C3a receptor antagonist attenuates tau hyperphosphorylation via glycogen synthase kinase 3β signaling pathways.

Neurofibrillary tangles aggregated from hyperphosphorylated tau protein are the main pathological feature of Alzheimer's disease (AD). Complement C3 (or C3a) is the core component of the complement system and is associated with AD pathological processes. However, it remains unclear whether C3a or the C3a receptor has any effect on tau phosphorylation. In this study, we found that exposure of SH-SY5Y cells to okadaic acid (OA) decreased cell viabilities and induced tau hyperphosphorylation. These effects were alleviated by C3a receptor antagonist SB290157 and were further validated by C3a receptor siRNA in OA-treated SH-SY5Y cells. In addition, our results demonstrated that SB290157 markedly inhibited the activities of glycogen synthase kinase 3β (GSK3β), but had no effect on protein phosphatase 2AC subunit (PP2Ac) and cyclin-dependent kinases 5 (CDK5). Our findings here indicate the unique role of the C3a receptor in regulating tau phosphorylation via GSK3β signaling pathways and suggest that the C3a receptor may be a viable target for treating AD.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app