Add like
Add dislike
Add to saved papers

Propofol specifically reduces PMA-induced neutrophil extracellular trap formation through inhibition of p-ERK and HOCl.

Life Sciences 2019 Februrary 14
Neutrophil extracellular traps (NETs) are net-like chromatin fibers that can trap and kill microorganisms. Although several anti-inflammatory effects of intravenous anesthetics have been reported, it has not been investigated whether intravenous anesthetics influence NET formation.

AIMS: To compare the effects of four intravenous anesthetics (propofol, thiamylal sodium, midazolam, and ketamine) on phorbol myristate acetate (PMA)-induced NET formation and analyze the associated signaling pathways.

MATERIALS AND METHODS: PMA-stimulated NETs formed in the absence or presence of intravenous anesthetics were stained with SYTOX Green and then quantified. Inhibitors were applied to investigate the related mechanism, which was confirmed by western blotting, and ROS were detected.

KEY FINDINGS: The neutrophils incubated with propofol showed the lowest degree of NET formation compared with those incubated with the other intravenous anesthetics. Propofol significantly reduced the level of myeloperoxidase (MPO)-derived HOCl but not that of superoxide. Aminopyrine, an MPO inhibitor, markedly decreased the number of PMA-induced NETs, indicating the involvement of HOCl in the inhibitory effect of propofol on NET formation. According to western blotting results, the level of p-ERK was reduced by propofol during PMA-induced NET formation. The ERK inhibitor PD98059 decreased NET formation but did not inhibit PMA-induced HOCl generation, and aminopyrine did not reduce ERK phosphorylation.

SIGNIFICANCE: Through this study, we define a new anti-inflammatory effect of intravenous anesthetics. Of the four intravenous anesthetics tested, propofol was the most potent inhibitor of NET formation. Moreover, propofol resulted in a decrease in PMA-induced NET formation by two independent mechanisms: inhibition of HOCl and p-ERK.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app