Add like
Add dislike
Add to saved papers

Ability of a urine gene expression classifier to reduce the number of follow-up cystoscopies in bladder cancer patients.

This study aimed to improve our previous urine gene expression classifiers focusing on the detection of non-high-risk non-muscle-invasive bladder cancer (NMIBC), and develop a new classifier able to decrease the frequency of cystoscopies during bladder cancer (BC) patients' surveillance. A total of 597 urines from BC patients, controls and patients in follow-up for BC (PFBC) were included. The study has 3 phases. In the urinary biomarker discovery phase, 84 urines from BC and control patients were retrospectively included and analyzed by RNA sequencing. In the classifier development phase, a total of 132 selected genes from previous phase were evaluated by nCounter in 214 prospectively collected urines from PFBC (98 with tumor). A diagnostic classifier was generated by logistic regression. Finally, in the classifier validation phase, a multicentric and international cohort of 248 urines (134 BC and 114 nonrecurrent PFBC) was used to validate classifier performance. A total of 521 genes were found differentially expressed between non-high-risk NMIBC samples and all other groups (P < 0.05). An 8-gene diagnostic classifier with an area under curve (AUC) of 0.893 was developed. Validation of this classifier in a cohort of PFBC achieved an overall sensitivity (SN) and a negative predictive value (NPV) of 96% and 97%, respectively (AUC = 0.823). Notably, this accuracy was maintained in non-high-risk NMIBC group (SN = 94%; NPV = 98%). In conclusion, this 8-gene expression classifier has high SN and NPV in a real clinical scenario. The use of this classifier can reduce the number of follow-up cystoscopies in PFBC, although assessing its final place in clinical setting is necessary.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app