Add like
Add dislike
Add to saved papers

Quantification of frequency-dependent genetic architectures in 25 UK Biobank traits reveals action of negative selection.

Nature Communications 2019 Februrary 16
Understanding the role of rare variants is important in elucidating the genetic basis of human disease. Negative selection can cause rare variants to have larger per-allele effect sizes than common variants. Here, we develop a method to estimate the minor allele frequency (MAF) dependence of SNP effect sizes. We use a model in which per-allele effect sizes have variance proportional to [p(1 - p)]α , where p is the MAF and negative values of α imply larger effect sizes for rare variants. We estimate α for 25 UK Biobank diseases and complex traits. All traits produce negative α estimates, with best-fit mean of -0.38 (s.e. 0.02) across traits. Despite larger rare variant effect sizes, rare variants (MAF < 1%) explain less than 10% of total SNP-heritability for most traits analyzed. Using evolutionary modeling and forward simulations, we validate the α model of MAF-dependent trait effects and assess plausible values of relevant evolutionary parameters.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app