Add like
Add dislike
Add to saved papers

Sample preparation method for visualization of nanoparticulate captured on mixed cellulose ester filter media by enhanced darkfield microscopy and hyperspectral imaging.

A significant hurdle in conducting effective health and safety hazard analysis and risk assessment for the nanotechnology workforce is the lack of a rapid method for the direct visualization and analysis of filter media used to sample nanomaterials from work environments that represent potential worker exposure. Current best-known methods include transmission electron microscopy (TEM) coupled with energy dispersive x-ray spectroscopy (EDS) for elemental identification. TEM-EDS is considerably time-, cost-, and resource-intensive, which may prevent timely health and safety recommendations and corrective actions. A rapid screening method is currently being explored using enhanced darkfield microscopy with hyperspectral imaging (EDFM-HSI). For this approach to be effective, rapid, and easy, sample preparation that is amenable to the analytical technique is needed. Here, we compare the sample preparation steps for mixed cellulose ester (MCE) filter media specified in NIOSH Method 7400-Asbestos and Other Fibers by Phase Contrast Microscopy (PCM)-against a new method, which involves saturation of the filter media with acetone. NIOSH Method 7400 was chosen as a starting point since it is an established technique for preparing transparent MCE filters for optical microscopy. Limitations in this method led to the development and comparison of a new method. The new method was faster, easier, and rendered filters more transparent, resulting in improved visualization and analysis of nanomaterials via EDFM-HSI. This new method is suitable for a rapid screening protocol due to its speed, ease of use, and the improvement in image acquisition and analysis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app